User’s Guide to the Community Atmosphere Model
CAM-5.2

User’s Guide to the Community Atmosphere Model CAM-5.2

Table of Contents

Acknowledgments v
1. Introduction 1
Changes from previous 1elease ... 1
Getting Help -- Other User ReSoUrces...........ccccouviiviiiiiiicicccicccceccen, 1

The CAM Web Page ..o 2

The CESM Bulletin Board...........ccccccooviiiiiiiiniiiiiiiiccce 2

Reporting bugs.........ccciiiiiiiiiiii e 2

2. Building and Running CAM 5
Sample Interactive SESSION.........cceiiviiiiiiiiiiii 6
Configuring CAM for serial eXecutionccccviiiiiiciiiiiiiiiiiinniiine, 6
Specifying the Fortran compiler...........ccocovviiiiiiiiiiiie, 7
Configuring CAM for parallel eXecutioncccococececceeieeeennerennenen. 9

Building CAM ..o 11

Building the Namelist ..., 11

Acquiring Input Datasets ... 14

Running CAM........cooiiiiiiiiiccc s 14

Sample RUN SCIIPLScoviiniiiiiiiiiiicicc e 15
EXQMPILES ..o 15
Running CAM via the CESM SCIIPtS......cccouviviiiiiiiiiiiiiiiiiccccccces 15

3. Model Output 17
Model HiStory Files.........cccciiiiiiiiiiiiiiiccerr e 17
Fields Output to History Filesccccccovviiiiiiniiiiiccccccn, 17

A. The configure utility 19
How configure is called from the CESM SCIipts........cccoeuviiiiiiiiiciicccienne 19
Options to cONfigUre............ocooviiiii e 19
CAM configurationccocoeviviiiniiiiiiiii e 20

SCAM configurationcooevvieereiiiiiiice e 22

CAM parallelization..........ccoouoiiiiiii 22

CICE decompOSItioNccueuiuiueiiiiieieieieieiciicis s 22

General OPtIONSccuiiiiiiiieic e 23

Surface COMPONENLSooeuruiiiieieiecee e 24

CAM standalone build...........ccceiiiiiiiiiiiiiiiiie 24
Environment variables recognized by configureccccoovviininnn 26

B. The build-namelist utility 29
Options to build-namelist...............ccocooiiiiiie 30
Environment variables used by build-namelistccccoooorinnn 31

C. CAM Namelist Variables 33

iii

v

Acknowledgments

We wish to acknowledge members of NCAR’s Atmospheric Modeling and
Predictability Section (AMP), CESM Software Engineering Group (CSEG), and
Computation and Information Systems Laboratory (CISL) for their contributions to
the development of CAM-5.2.

The new model would not exist without the significant input from members of the
CESM Atmospheric Model Working Group (AMWG) too numerous to mention.
Rich Neale (NCAR), Minghua Zhang (SUNY), Mark Taylor (SNL) and Leo Donner
(GFDL), were co-chairs of the AMWG during part or all of the development of
CAM-5.2.

We would like to acknowledge the substantial contributions to the CAM effort from
the National Science Foundation, the Department of Energy, the National Oceanic
and Atmospheric Administration, and the National Aeronautics and Space Admin-
istration.

Acknowledgments

vl

Chapter 1. Introduction

The Community Atmosphere Model version CAM-5.2 is released as the atmosphere
component of the Community Earth System Model version CESM-1.1. It is the latest
in a series of global atmosphere models whose development is guided by the Atmo-
sphere Model Working Group' (AMWG) of the Community Earth System Model*
(CESM) project. CAM is used as both a standalone model and as the atmospheric
component of the CESM. CAM has a long history of use as a standalone model by
which we mean that the atmosphere is coupled to an active land model (CLM), a ther-
modynamic only sea ice model (CICE), and a data ocean model (DOCN). When one
speaks of "doing CAM simulations" the implication is that it’s a standalone configu-
ration that is being used. When CAM is coupled to active ocean and sea ice models
then we refer to the model as CESM.

CAM provides a framework for running the "Whole Atmosphere" configurations;
WACCM, and WACCM-X. To run CAM in a WACCM or WACCM-X configuration
the user is referred to the CESM-1.1 User’s Guide’.

In versions of CAM before 4.0 the driver for the standalone configuration was com-
pletely separate code from what was used to couple the components of the CCSM.
One of the most significant software changes in CAM-4.0 was a refactoring of how the
land, ocean, and sea ice components are called which enabled the use of the CCSM
coupler to act as the CAM standalone driver (this also depended on the complete
rewritting of the CCSM coupler to support sequential execution of the components).
Hence, for the CESM1 model, just as for CCSM4 before it, it is accurate to say that a
CAM standalone configuration is nothing more than a special configuration of CESM
in which the active ocean and sea ice components are replaced by data ocean and
thermodynamic sea ice components.

Since the CAM standalone model is just a special configuration of CESM it can be
run using the CESM scripts. This is done by using one of the "F' compsets and is
described in the CESM-1.1 User’s Guide*. The main advantage of running CAM via
the CESM scripts is to leverage the high level of support that those scripts provide
for doing production runs of predefined experiments on supported platforms. The
CESM scripts do things like: setting up reasonable runtime environments; automat-
ically retrieving required input datasets from an SVN server; and archiving output
files. But CAM is used in a lot of environments where the complexity of production
ready scripts is not necessary. In these instances the flexibility and simplicity of being
able to completely describe a run using a short shell script is a valuable option. In
either case though, the ability to customize a CAM build or runtime configuration
depends on being able to use the utilities described in this document. Any build con-
figuration can be set up via appropriate commandline arguments to CAM’s config-
ure utility, and any runtime configuration can be set up with appropriate arguments
to CAM’s build-namelist utility. Issues that are specific to running CAM from the
CESM scripts will not be discussed in this guide. Rather we focus on issues that are
independent of which scripts are used to run CAM, although there is some attention
given in this guide to the construction of simple scripts designed for running CAM
in its standalone mode.

Changes from previous release

This information is available from the CESM-1.1 home page’.

+ New features in CAM-5.2°. Includes notes on code cleanup and refactoring as well
as bug fixes.

« Summary of answer changes’.

+ Known problems®.

Chapter 1. Introduction

Getting Help -- Other User Resources

Notes

The CAM Web Page

The central source for information on CAM is the CAM web page’.

The CESM Bulletin Board

The CESM Bulletin Board is a moderated forum for rapid exchange of information,
ideas, and topics of interest relating to the various versions of CAM. This includes
sharing software tools, datasets, programming tips and examples, as well as discus-
sions of questions, problems and workarounds. The primary motivation for the es-
tablishment of this forum is to facilitate and encourage communication between the
users of the CAM around the world. This bulletin board will also be used to distribute
announcements related to CAM.

The CESM Bulletin Board is here: http:/ /bb.cgd.ucar.edu/.

Reporting bugs

If a user should encounter bugs in the code (i.e., it doesn’t behave in a way in which
the documentation says it should), the problem should be reported electronically to
the CESM Bulletin Board". When writing a bug report the guiding principle should
be to provide enough information so that the bug can be reproduced. The following
list suggests the minimal information that should be contained in the report:

1. The version number of CAM (or CCSM/CESM if CAM was obtained as part
of a CCSM or CESM distribution).

2. The architecture on which the code was built. Include relevent information
such as the Fortran compiler, MPI library, etc.

3. The configure commandline. If it is this command that is failing, then report
the output from this command. It can also be very useful to run this command
with the —v option to turn on verbose output.

4. The build-namelist commandline. If it is this command that is failing, then
report the output from this command. It can also be very useful to run this
command with the —v option to turn on verbose output.

5. Model printout. Ideally this would contain a stack trace. But it should at least
contain any error messages printed to the output log.

Please note that CAM is a research tool, and not all features contained in the code
base are supported.

/working groups/Atmosphere/

/models/cesm1.1/
/models/cesm1.1/cesm/doc/usersguide/bookl.html
/models/cesm1.1/cesm/doc/usersguide/bookl.html
/models/cesm1.1/

/models/cesm1.1/tags/cesm1_1/whatsnew.html

N o e N

/models/cesm1.1/tags/cesml_1/answerchanges.html

Chapter 1. Introduction

8. /models/cesm1.1/tags/cesm1_1/knownproblems.html
9. /models/cesml.1/cam
10. http:/ /bb.cgd.ucar.edu/

Chapter 1. Introduction

Chapter 2. Building and Running CAM

This chapter describes how to build and run CAM in its standalone configuration.
We do not provide scripts that are setup to work out of the box on a particular set of
platforms. If you would like this level of support then consider running CAM from
the CESM scripts (see CESM-1.1 User’s Guide'). We do however provide some ex-
amples of simple run scripts which should provide a useful starting point for writing
your own scripts (see the Section called Sample Run Scripts).

In order to build and run CAM the following are required:

¢ The source tree. CAM-5.2 is distributed with CESM-1.1. To obtain the source code
go to the section "Acquiring the Code" on the CESM Home Page”. When we refer to
the root of the CAM source tree, this is the same directory as the root of the CESM
source tree. This directory is refered to throughout this document as $CAM_ROOT.

« Perl (version 5.4 or later).
» A GNU version of the make utility.

« Fortran and C compilers. The Fortran compiler needs to support at least the For-
tran95 standard.

* A NetCDF library (version 4.1.3 or later) that has the Fortran APIs built using the
same Fortran compiler that is used to build the rest of the CAM code. This library
is used extensively by CAM both to read input datasets and to write the output
datasets. The NetCDF source code is available here’. We have updated the required
NetCDF library version from 3.6 to 4.1.3 due to a recently discovered bug which
affects all previous versions of the NetCDF library. The bug only occurs in special
circumstances that are not that easy to replicate, however the result is the corrupt
files are silently created. A more complete description of the bug is here*.

* Input datasets. The required datasets depend on the CAM configuration. Deter-
mining which datasets are required for any configuration is discussed in the Sec-
tion called Building the Namelist. Acquiring those datasets is discussed in the Sec-
tion called Acquiring Input Datasets.

To build CAM for SPMD execution it will also be necessary to have an MPI library
(version 1 or later). As with the NetCDF library, the Fortran API should be build using
the same Fortran compiler that is used to build the rest of CAM. Otherwise linking to
the library may encounter difficulties, usually due to inconsistencies in Fortran name
mangling.

Building and running CAM takes place in the following steps:

1. Configure model
2. Build model
3. Build namelist

4. Execute model

Configure model

This step is accomplished by running the configure utility to set the compile-time
parameters such as the dynamical core (Eulerian Spectral, Semi-Lagrangian Spectral,
Finite Volume, or Spectral Element), horizontal grid resolution, and the type of paral-
lelism to employ (shared-memory and/or distributed memory). The configure utility
is discussed in Appendix A.

Chapter 2. Building and Running CAM

Build model

This step includes compiling and linking the executable using the GNU make com-
mand (gmake). configure creates a Makefile in the directory where the build is to
take place. The user then need only change to this directory and execute the gmake
command.

Build namelist

This step is accomplished by running the build-namelist utility, which supports a
variety of options to control the run-time behavior of the model. Any namelist vari-
able recognized by CAM can be changed by the user via the build-namelist interface.
There is also a high level "use case" functionality which makes it easy for the user to
specify a consistent set of namelist variable settings for running particular types of
experiments. The build-namelist utility is discussed in Appendix B.

Execute model

This step includes the actual invocation of the executable. When running using dis-
tributed memory parallelism this step requires knowledge of how your machine in-
vokes (or "launches") MPI executables. When running with shared-memory paral-
lelism (using OpenMP) you may also set the number of OpenMP threads. On most
HPC platforms access to the compute resource is through a batch queue system. The
sample run scripts discussed in the Section called Sample Run Scripts show how to set
the batch queue resources on several HPC platforms.

Sample Interactive Session

The following sections present an interactive C shell session to build and run a de-
fault version of CAM. Most often these steps will be encapsulated in shell scripts. An
important advantage of using a script is that it acts to document the run you’ve done.
Knowing the source code tree, and the configure and build-namelist commands pro-
vides all the information needed to replicate a run.

For the interactive session the shell variable camcfg is set to the directory in
the source tree that contains the CAM configure and build-namelist utilities
($CAM_ROOT/models/atm/cam/bld).

Much of the example code in this document is set off in sections like this.
Many examples refer to files in the distribution source tree using
filepaths that are relative to distribution root directory, which we
denote, using a UNIX shell syntax, by $CAM_ROOT. The notation indicates
that CAM_ROOT is a shell variable that contains the filepath. This could
just as accurately be referred to as $CCSMROOT since the root directory of
the CESM distribution is the same as the root of the CAM distribution
which is contained within it.

Configuring CAM for serial execution

We start by changing into the directory in which the CAM executable will be built,
and then setting the environment variables INC_NETCDF and LIB_NETCDF which
specify the locations of the NetCDF include files and library. This information is re-
quired by configure in order for it to produce the Makefile. The NetCDF library is
require by all CAM builds. The directories given are just examples; the locations of
the NetCDF include files and library are system dependent. The information pro-
vided by these environment variables could alternatively be provided via the com-
mandline arguments -nc_inec and -nc_1ib.

oe

cd /work/user/cam_test/bld
setenv INC_NETCDF /usr/local/include
% setenv LIB_NETCDF /usr/local/lib

oe

Chapter 2. Building and Running CAM

Next we issue the configure command (see the example just below). The argument
-dyn £v specifies using the FV dynamical core which is the default for CAMS5, but
we recommend always adding the dynamical core (dycore for short) argument to
configure commands for clarity. The argument ~hgrid 10x15 specifies the horizon-
tal grid. This is the coarsest grid available for the FV dycore in CAM and is often
useful for testing purposes.

We recommend using the -test option the first time CAM is built on any machine.
This will check that the environment is properly set up so that the Fortran compiler
works and can successfully link to the NetCDF and MPI (if SPMD is enabled) li-
braries. Furthermore, if the configuration is for serial execution, then the tests will in-
clude both build and run phases which may be useful in exposing run time problems
that don’t show up during the build, for example when shared libraries are linked dy-
namically. If any tests fail then it is useful to rerun the configure command and add
the —v option which will produce verbose output of all aspects of the configuration
process including the tests. If the configuration is for an SPMD build, then no attempt
to run the tests will be made. Typically MPI runs must be submitted to a batch queue
and are not enabled from interactive sessions. Also the method of launching an MPI
job is system dependent. But the build and static linking will still be tested.

% Scamcfg/configure —-dyn fv -hgrid 10x15 -nospmd —-nosmp -test

Issuing command to the CICE configure utility:
SCAM_ROOT/models/ice/cice/bld/configure -hgrid 10x15 -cice_mode prescribed \
-ntr_aero 0 -ntasks 1 -nthreads 1 -cache config_cache_cice.xml \
—cachedir /work/user/cam_test/bld

CICE configure done.

MCT configure is done.

creating /work/user/cam_test/bld/Filepath

creating /work/user/cam_test/bld/Makefile

creating /work/user/cam_test/bld/config.h

creating /work/user/cam_test/bld/config_cache.xml

Looking for a valid GNU make... using gmake
Testing for Fortran 90 compatible compiler... using pgf95
Test linking to NetCDF library... ok

CAM configure done.

The first line of output from the configure command is an echo of the system com-
mand that CAM’s configure issues to invoke the CICE configure utility. CICE’s con-
figure is responsible for setting the values of the CPP macros that are needed to build
the CICE code.

After the CICE configure is complete the MCT configure script is executed to create
the Makefile for building MCT as a separate library. There is a status line output to
indicate success of that process.

The next four lines of output inform the user of the files being created by configure.
All these files except for the cache file are required to be in the CAM build directory,
so it is generally easiest to be in that directory when configure is invoked.

The output from the -test option tells us that gmake is a GNU Make on this ma-
chine; that the Fortran compiler is pgf95; and that code compiled with the Fortran
compiler can be successfully linked to the NetCDF library. The CAM configure script
is the place where the default compilers are specified. On Linux systems the default is
pgf95. Finally, since this is a serial configuration no test for linking to the MPI library
was done.

Specifying the Fortran compiler

In the previous section the configure command was issued without specifying which
Fortran compiler to use. For that to work we were depending on the CAM con-
figure script to select a default compiler. One of the differences between the CAM
standalone build and a build using the CESM scripts is that CAM provides defaults

7

Chapter 2. Building and Running CAM

based on the operating system name (as determined by the Perl internal variable $OS-
NAME), while the CESM scripts require the user to specify the machine (and com-
piler if the machine supports more than one) as an argument to the create_newcase
command.

The CAM makefile currently recognizes the following operating systems and com-
pilers.

AIX
x1f95_r, mpxIf95_r

Linux
pgf95 (this is the default)
1£95
ifort
gfortran (has had minimal testing)

pathf90 (has had minimal testing)

Darwin
x1f95_r, mpx1f95_r, ifort

BGL
blrts_x1f95

BGP
mpixIf95_r

The above list contains two IBM Blue Gene machines; BGL and BGP. The executables
on these machines are produced by cross compilation and hence the configure script
is not able to determine the machine for which the build is intented. In this case the
user must supply this information to configure by using the -target_os option with
the values of either bgl or bgp.

On a Linux platform several compilers are recognized with the default being pgf95.
It is assumed that the compiler to be used is in the user’s path (i.e., in one of the
directories in the PATH environment variable). If it isn’t then the -test option will
issue an error indicating that the compiler was not found.

Suppose for example that one would like to use the Intel compiler on a local Linux
system. The CAM makefile recognizes ifort as the name of the Intel compiler. To
invoke this compiler use the -fc argument to configure. The following example il-
lustrates the output you get when the compiler you ask for isn’t in your PATH:

% Scamcfg/configure —-fc ifort -dyn fv -hgrid 10x15 -nospmd -nosmp -test

Issuing command to the CICE configure utility:
$CAM_ROOT/models/ice/cice/bld/configure —-hgrid 10x15 -cice_mode prescribed \
-ntr_aero 0 -ntasks 1 -nthreads 1 -cache config_cache_cice.xml \
—cachedir /work/user/cam_test/bld

CICE configure done.

FAILURE: MCT configure

In previous CAM versions this problem would be caught by the -test option, but
with the addition of MCT’s configure the problem is now detected there. By default
MCT will be build in a subdirectory of the build directory named mct. That directory
will contain a file, config. log, which should be examined to track down the cause
of the failure. In this case the file contains the message:

$CAM_ROOT/models/utils/mct/configure: line 3558: ifort: command not found

Chapter 2. Building and Running CAM

This means that the PATH environment variable has not been correctly set. The first
thing to try is to verify the directory that contains the compiler, and then to prepend
this directory name to the PATH environment variable.

Another instance where the user needs to supply information about the Fortran com-
piler type to configure is when the compiler is being invoked by a wrapper script. A
common example of this is using the mpif90 command to invoke the Fortran com-
piler that was used to build the MP1 libraries. This facilitates correct compilation and
linking with the MPI libraries without the user needing to add the required include
and library directories, or library names. The same benefit is provided by the ftn
wrapper used on Cray XT and XE systems. In the usual case that a Linux OS is being
used, since the CAM makefile will not recognize these compiler names, it will assume
that the default compiler is being used, and thus will supply compiler arguments that
are appropriate for pgf90. The compilation will fail if pgf90 is not the compiler being
invoked by the wrapper script (invoking configure with the —test option is a good
way to catch this problem). The way to specify which Fortran compiler is being in-
voked by a wrapper script is via the —-fc_type argument to configure. This argument
takes one of the values pgi, lahey, intel, pathscale, gnu, or x1f.

CAM'’s configure script attempts to determine the compiler type when a compiler
specific name is used. It does so by a regular expression match against the unique
part of specific compiler names (e.g., any compiler name matching ‘pgf’ will be given
the default type of pgi). If the default is wrong then the user will need to manually
override the default via setting the —fc_type argument.

Note: We have made progress porting CAM to the gfortran compiler, but it is still not
regularly tested or used for production work.

Configuring CAM for parallel execution

Before moving on to building CAM we address configuring the executable for paral-
lel execution. But before talking about configuration specifics let’s briefly discuss the
parallel execution capabilities of CAM.

CAM makes use of both distributed memory parallelism implemented using MPI
(referred to throughout this document as SPMD?), and shared memory parallelism
implemented using OpenMP (referred to as SMP°). Each of these parallel modes may
be used independently of the other, or they may be used at the same time which we
refer to as "hybrid mode". When talking about the SPMD mode we usually refer to
the MPI processes as "tasks", and when talking about the SMP mode we usually refer
to the OpenMP processes as "threads". A feature of CAM which is very helpful in
code development work is that the simulation results are independent of the number
of tasks and threads used.

Now consider configuring CAM to run in pure SPMD mode. Prior to the introduction
of CICE as the sea ice model SPMD was turned on using the —spmd option. But if we
try that now we find the following;:

% Scamcfg/configure —-dyn fv -hgrid 10x15 -spmd -nosmp

* % ERROR: If CICE decomposition parameters are not specified, then
* % -ntasks must be specified to determine a default decomposition
* ok for a pure MPI run. The setting was: ntasks=

A requirement of the CICE model is that its grid decomposition (which is indepen-
dent of CAM’s decomposition even when the two models are using the same hori-
zontal grid) must be specified at build time. In order for CICE'’s configure to set the
decomposition it needs to know how much parallelism is going to be used. This in-
formation is provided by specifying the number of MPI tasks that the job will use via
setting the —-ntasks argument.

Chapter 2. Building and Running CAM

Note: The default CICE decomposition can be overridden by setting it explicitly using the
configure options provided for that purpose.

When running CAM in SPMD mode the build procedure must be able to find the MPI
include files and library. The recommended method for doing this is to use scripts
provided by the MPI installation to invoke the compiler and linker. On Linux systems
a common name for this script is mpif90. The CAM Makefile does not currently use
this script by default on Linux platforms, so the user must explicitly specify it on the
configure commandline using the —fc argument:

% Scamcfg/configure —fc mpif90 —-fc_type pgi —-cc mpicc -dyn fv -hgrid 10x15 —-ntasks 6 -r

Issuing command to the CICE configure utility:
SCAM_ROOT/models/ice/cice/bld/configure -hgrid 10x15 —-cice_mode prescribed \
-ntr_aero 0 -ntasks 6 -nthreads 1 -cache config_cache_cice.xml \
—cachedir /work/user/cam_test/bld

CICE configure done.

MCT configure is done.

creating /work/user/cam_test/bld/Filepath

creating /work/user/cam_test/bld/Makefile

creating /work/user/cam_test/bld/config.h

creating /work/user/cam_test/bld/config_cache.xml

Looking for a valid GNU make... using gmake

Testing for Fortran 90 compatible compiler... using mpif90

Test linking to NetCDF library... ok

Test linking to MPI library... ok

CAM configure done.

Notice that the number of tasks specified to CAM’s configure is passed through to
the commandline that invokes the CICE configure. Generally any number of tasks
that is appropriate for CAM to use for a particular horizontal grid will also work for
CICE. But it is possible to get an error from CICE at this point in which case either
the number of tasks requested should be adjusted, or the options that set the CICE
decomposition explicitly will need to be used.

Note: The use of the -ntasks argument to configure implies building for SPMD. This
means that an MPI library will be required. Hence, the specification -ntasks 1 is not the
same as building for serial execution which is done via the -nospmd option and does not
require a full MPI library. (Implementation detail: when building for serial mode a special
serial MPI library is used which basically provides a complete MPI API, but doesn’t do
any message passing.)

Next consider configuring CAM to run in pure SMP mode. Similarly to SPMD mode,
prior to the introduction of the sea ice component CICE the SMP mode was turned
on using the —smp option. But with CAMS5 that will result in the same error from
CICE that we obtained above from attempting to use -spmd. If we are going to run
the CICE code in parallel, we need to specify up front how much parallelism will be
used so that the CICE configure utility can set the CPP macros that determine the grid
decomposition. We specify the amount of SMP parallelism by setting the -nthreads
option as follows:

% Scamcfg/configure —-dyn fv -hgrid 10x15 -nospmd -nthreads 6 -test

Issuing command to the CICE configure utility:
SCAM_ROOT/models/ice/cice/bld/configure -hgrid 10x15 -cice_mode prescribed \
-ntr_aero 0 -ntasks 1 -nthreads 6 -cache config_cache_cice.xml \
—cachedir /work/user/cam_test/bld

CICE configure done.

We see that the number of threads has been passed through to the CICE configure
command.

10

Chapter 2. Building and Running CAM

Note: The use of the -nthreads argument to configure implies building for SMP. This
means that the OpenMP directives will be compiled. Hence, the specification -nthreads
1 is not the same as building for serial execution which is done via the -nosmp option and
does not require a compiler that supports OpenMP.

Finally, to configure CAM for hybrid mode, simply specify both the -ntasks and
-nthreads arguments to configure.

Building CAM
Once configure is successful, build CAM by issuing the make command:

o

% gmake -j2 >&! make.out

The argument -j2 is given to allow a parallel build using 2 processes. The optimal
number of processes to use depends on the compute resource available. There is alot
of available parallelism in the build procedure, so using 16 or even 32 processes may
speed things up considerably. Note however that the build happens in shared (not
distributed) memory. So specifying more processes than there are processors in a
shared memory node is generally not helpful (although the presence of hyperthread-
ing or SMT on a node may allow specifying twice the number of cores).

It is useful to redirect the output from make to a file for later reference. This file
contains the exact commands that were issued to compile each file and the final com-
mand which links everything into an executable file. Relevant information from this
file should be included when posting a bug report concerning a build failure.

Building the Namelist

The first step in the run procedure is to generate the namelist files. The only safe way
to generate consistent namelist settings is via the build-namelist utility. Even in the
case where only a slight modification to the namelist is desired, the best practice is to
provide the modified value as an argument to build-namelist and allow it to actually
generate the namelist files.

The following interactive C shell session builds a default namelist for CAM. We
assume that a successful execution of configure was performed in the build direc-
tory as discussed in the previous section. This is an essential prerequisite because
the config_cache.xml file produced by configure is a required input file to build-
namelist. One of the responsibilities of build-namelist is to set appropriate default
values for many namelist variables, and it can only do this if it knows how the CAM
executable was configured. That information is present in the cache file. As in the
previous section the shell variable camcfg is set to the CAM configuration directory
($CAM_ROOT/models/atm/cam/bld).

We begin by changing into the directory where CAM will be run. It is usually con-
venient to have the run directory be separate from the build directory. Possibly a
number of different runs will be done that each need to have a separate run directory
for the output files, but will all use the same executable file from a common build
directory. It is, of course, possible to execute build-namelist in the build directory
since that’s where the cache file is and so you don’t need to specify to build-namelist
where to find that file (it looks in the current working directory by default). But then,
assuming you plan to run CAM in a different directory, all the files produced by
build-namelist need to be copied to the run directly. If you're running configure and
build-namelist from a script, then you need to know how to specify the filenames for
the files that need to be copied. For this reason it’s more robust to change to the run
directory and execute build-namelist there. That way if there’s a change to the files

11

Chapter 2. Building and Running CAM

12

that are produced, your script doesn’t break due to the files not all getting copied to
the run directory.

Next we set the CSMDATA environment variable to point to the root directory of
the tree containing the input data files. Note that this is a required input for build-
namelist (this information may alternatively be provided using the -csmdata argu-
ment). If not provided then build-namelist will fail with an informative message.
The information is required because many of the namelist variables have values that
are absolute filepaths. These filepaths are resolved by build-namelist by prepend-
ing the CSMDATA root to the relative filepaths that are stored in the default values
database.

The build-namelist commandline contains the —config argument which is used to
point to the cache file which was produced in the build directory. It also contains the
-test argument, explained further below.

o°

cd /work/user/cam_test

% setenv CSMDATA /fs/cgd/csm/inputdata
% Scamcfg/build-namelist -test —-config /work/user/cam_test/bld/config_cache.xml

Writing

Writing RTM

Writing
Writing

Writing CLM

Writing

CICE namelist to ./ice_in

namelist to ./rof_in

DOCN namelist to ./docn_ocn_in
DOCN stream file to ./docn.stream.txt

namelist to ./lnd_in

driver namelist to ./drv_in

CAM writing dry deposition namelist to drv_flds_in
Writing ocean component namelist to ./docn_in

CAM writing namelist to atm_in

Checking whether input datasets exist locally...

OK —-- found
OK found
OK found
OK found
OK found
OK found
OK found
OK found
OK found
OK found
OK found
OK found
OK found
OK found
OK found
OK found
OK found
OK found
OK found
OK found
OK found
OK found
OK found
OK found
OK found
OK found
OK found
OK found
OK found
OK found
OK found
OK found
OK found
OK found
OK found
OK found
OK found

depvel_file = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart/dvel/depvel_mc
tracer_cnst_filelist = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart_aero/
tracer_cnst_datapath = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart_aero/
depvel_1nd_file = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart/dvel/regri
xs_long_file = /fs/cgd/csm/inputdata/atm/waccm/phot/temp_prs_GT200nm_Jjpl06_
rsf_file = /fs/cgd/csm/inputdata/atm/waccm/phot/RSF_GT200nm_v3.0_c080416.nc
clim_soilw_file = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart/dvel/clim_
exo_coldens_file = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart/phot/exo_
tracer_cnst_file = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart_aero/oxic
season_wes_file = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart/dvel/seasc
solar_data_file = /fs/cgd/csm/inputdata/atm/cam/solar/solar_ave_scl9-sc23.c
soil_erod = /fs/cgd/csm/inputdata/atm/cam/dst/dst_10x15_c090203.nc

bndtvs = /fs/cgd/csm/inputdata/atm/cam/sst/sst_HadOIBl_bc_10x15_clim_c05052
focndomain = /fs/cgd/csm/inputdata/atm/cam/ocnfrac/domain.camocn.10x15_USGS
tropopause_climo_file = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart/ub/c
fpftcon = /fs/cgd/csm/inputdata/lnd/clm2/pftdata/pft-physiology.cl110425.nc
fsnowaging = /fs/cgd/csm/inputdata/lnd/clm2/snicardata/snicar_drdt_bst_fit_
fatmlndfrc = /fs/cgd/csm/inputdata/share/domains/domain.lnd.fv10x15_USGS.1]
fsnowoptics = /fs/cgd/csm/inputdata/lnd/clm2/snicardata/snicar_optics_5bnd_
fsurdat = /fs/cgd/csm/inputdata/lnd/clm2/surfdata/surfdata_10x15_simyr2000_
prescribed_ozone_datapath = /fs/cgd/csm/inputdata/atm/cam/ozone
prescribed_ozone_file = /fs/cgd/csm/inputdata/atm/cam/ozone/ozone_1.9x2.5_1I
ligopticsfile = /fs/cgd/csm/inputdata/atm/cam/physprops/F_nwv1200_mu20_lam"
iceopticsfile = /fs/cgd/csm/inputdata/atm/cam/physprops/iceoptics_c080917.r
water_refindex_file = /fs/cgd/csm/inputdata/atm/cam/physprops/water_refinde
ncdata = /fs/cgd/csm/inputdata/atm/cam/inic/fv/cami_0000-01-01_10x15_L30_c(
bnd_topo = /fs/cgd/csm/inputdata/atm/cam/topo/USGS-gtopo30_10x15_remap_c05(
ext_frc_specifier for SO02 = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart_
ext_frc_specifier for bc_al = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozar
ext_frc_specifier for num_al /fs/cgd/csm/inputdata/atm/cam/chem/trop_moze
ext_frc_specifier for num_a2 = /fs/cgd/csm/inputdata/atm/cam/chem/trop_moze

ext_frc_specifier for pom_al = /fs/cgd/csm/inputdata/atm/cam/chem/trop_moze
ext_frc_specifier for so4_al = /fs/cgd/csm/inputdata/atm/cam/chem/trop_moze
ext_frc_specifier for so4_a2 = /fs/cgd/csm/inputdata/atm/cam/chem/trop_moze
srf_emis_specifier for DMS = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart
srf_emis_specifier for S02 = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozart
srf_emis_specifier for SOAG = /fs/cgd/csm/inputdata/atm/cam/chem/trop_mozar

Chapter 2. Building and Running CAM

OK found srf_emis_specifier for bc_al = /fs/cgd/csm/inputdata/atm/cam/chem/trop_moze
OK found srf_emis_specifier for num_al = /fs/cgd/csm/inputdata/atm/cam/chem/trop_moz
OK found srf_emis_specifier for num_a2 = /fs/cgd/csm/inputdata/atm/cam/chem/trop_moz
OK found srf_emis_specifier for pom_al = /fs/cgd/csm/inputdata/atm/cam/chem/trop_moz
OK found srf_emis_specifier for sod4_al = /fs/cgd/csm/inputdata/atm/cam/chem/trop_moz
OK found srf_emis_specifier for sod4_a2 = /fs/cgd/csm/inputdata/atm/cam/chem/trop_moz
OK found mode_defs for so4_al = /fs/cgd/csm/inputdata/atm/cam/physprops/sulfate_rrtn
OK found mode_defs for pom_al = /fs/cgd/csm/inputdata/atm/cam/physprops/ocpho_rrtmg_
OK found mode_defs for soa_al = /fs/cgd/csm/inputdata/atm/cam/physprops/ocphi_rrtmg_
OK found mode_defs for bc_al = /fs/cgd/csm/inputdata/atm/cam/physprops/bcpho_rrtmg_c
OK found mode_defs for dst_al = /fs/cgd/csm/inputdata/atm/cam/physprops/dust4_rrtmg_
OK found mode_defs for ncl_al = /fs/cgd/csm/inputdata/atm/cam/physprops/ssam_rrtmg_c
OK found mode_defs for so4_a2 = /fs/cgd/csm/inputdata/atm/cam/physprops/sulfate_rrtn
OK found mode_defs for soa_a2 = /fs/cgd/csm/inputdata/atm/cam/physprops/ocphi_rrtmg_
OK found mode_defs for ncl_a2 = /fs/cgd/csm/inputdata/atm/cam/physprops/ssam_rrtmg_c
OK found mode_defs for dst_a3 = /fs/cgd/csm/inputdata/atm/cam/physprops/dustd_rrtmg_
OK found mode_defs for ncl_a3 = /fs/cgd/csm/inputdata/atm/cam/physprops/ssam_rrtmg_c
OK found mode_defs for sod4_a3 = /fs/cgd/csm/inputdata/atm/cam/physprops/sulfate_rrtn
OK found rad_climate for mam3_model = /fs/cgd/csm/inputdata/atm/cam/physprops/mam3_n
OK found rad_climate for mam3_mode2 = /fs/cgd/csm/inputdata/atm/cam/physprops/mam3_n
OK found rad_climate for mam3_mode3 = /fs/cgd/csm/inputdata/atm/cam/physprops/mam3_n

The first nine lines of output from build-namelist inform the user of the files that
have been created. There are namelist files for the ice component (ice_in), the river
runoff component (rof_in), the land component (1nd_in), the data ocean component
(docn_in, docn_ocn_in), the atmosphere component (atm_in), the driver (drv_in),
and a file that is read by both the atmosphere and land components (drv_£1lds_in).
There is also a "stream file" (docn. st ream. txt) which is read by the data ocean com-
ponent. Note that these filenames are hardcoded in the components and my not be
changed without source code modifications.

The next section of output is the result of using the -test argument to
build-namelist. As with configure we recommend using this argument whenever a
model configuration is being run for the first time. It checks that each of the files that
are present in the generated namelists can be found in the input data tree whose
root is given by the CSMDATA environment variable. If a file is not found then the
user will need to take steps to make that file accessible to the executing model before
a successful run will be possible. The following is a list of possible actions:

1. Acquire the missing file. If this is a default file supplied by the CESM project
then you will be able to download the file from the project’s svn data repository
(see the Section called Acquiring Input Datasets).

2. If you have write permissions in the directory under $CSMDATA then add the
missing file to the appropriate location there.

3.If you don’t have write permissions under $CSMDATA then put the file in
a place where you can (for example, your run directory) and rerun build-
namelist with an explicit setting for the file using your specific filepath.

Expanding a bit on rerunning build-namelist: let’s say for example that the -test op-
tion informed you that the nedata file cami_0000-01-01_10x15_L30_c081013.nc
was not found. You acquire the file from the data repository, but don’t have permis-
sions to write in the $CSMDATA tree. So you put the file in your run directory and
issue a build-namelist command that looks like this:

)

% Scamcfg/build-namelist -config /work/user/cam_test/bld/config_cache.xml \

-namelist "&atm ncdata=’/work/user/cam_test/cami_0000-01-01_10x15_L30_c081013.nc’

Now the namelist in atm_in will contain an initial file (specified by namelist variable
ncdata) which will be found by the executing CAM model.

13

Chapter 2. Building and Running CAM

Note: This particular configuration of CAM which is using the default cam5 physics pack-
age requires that about 60 datasets be specified in order to run correctly. Trying to man-
age namelists of that complexity by hand editing files is extremely error prone and is
strongly discouraged. User modifications to the default namelist settings can be made in
a number of ways while still letting build-namelist actually generate the final namelist. In
particular, the —-namelist, —-infile, and -use_case arguments to build-namelist are all
mechanisms by which the user can override default values or specify additional namelist
variables and still allow build-namelist to do the error and consistency checking which
makes the namelist creation process more robust.

Acquiring Input Datasets

Note: If you are doing a standard production run that is supported in the CESM scripts,
then using those scripts will automatically invoke a utility to acquire needed input datasets.
The information in this section is to aid developers using CAM standalone scripts.

The input datasets required to run CAM are available from a Subversion repository
located here: https:/ /svn-ccsm-inputdata.cgd.ucar.edu/trunk/inputdata/. The user
name and password for the input data repository will be the same as for the code
repository (which are provided to users when they register to acquire access to the
CESM source code repository).

Example

If you have a list of files that you need to acquire before running CAM, then you can

either just issue commands interactively, or if your list is rather long then you may

want to put the commands into a shell script. For example, suppose after running
build-namelist with the -test option you find that you need to acquire the file
/fs/cgd/csm/inputdata/atm/cam/inic/fv/cami_0000-01-01_10x15_L26_c030918.nc.
And let’s assume that /fs/cgd/csm/inputdata/ is the root directory of the
inputdata tree, and that you have permissions to write there. If the subdirectory
atm/cam/inic/fv/ doesn’t already exist, then create it. Finally, issue the following
commands at an interactive C shell prompt:

o\

set svnrepo='https://svn-ccsm-inputdata.cgd.ucar.edu/trunk/inputdata’
cd /fs/cgd/csm/inputdata/atm/cam/inic/fv
svn export $svnrepo/atm/cam/inic/fv/cami_0000-01-01_10x15_L26_c030918.nc
Error validating server certificate for ’"https://svn-ccsm-inputdata.cgd.ucar.edu:443":
— The certificate is not issued by a trusted authority. Use the
fingerprint to validate the certificate manually!
— The certificate hostname does not match.
— The certificate has expired.
Certificate information:
— Hostname: localhost.localdomain
- Valid: from Feb 20 23:32:25 2008 GMT until Feb 19 23:32:25 2009 GMT
— Issuer: SomeOrganizationalUnit, SomeOrganization, SomeCity, SomeState,
- Fingerprint: 86:01:bb:ad4:4a:e8:4d:8b:el:f1:01:dc:60:09:96:22:67:a4:49:ff
(R)eject, accept (t)emporarily or accept (p)ermanently? p
A cami_0000-01-01_10x15_L26_c030918.nc
Export complete.

oe

oe

The messages about validating the server certificate will only occur for the first file

that you export if you answer "p" to the question as in the example above.

14

Chapter 2. Building and Running CAM

Running CAM

Once the namelist files have successfully been produced, and the necessary input
datasets are available, the model is ready to run. Usually CAM will be run with
SPMD parallelization enabled, and this requires setting up MPI resources and possi-
bly dealing with batch queues. These issues will be addressed briefly in the Section
called Sample Run Scripts. But for a simple test in serial mode executed from an inter-
active shell, we only need to issue the following command:

% /work/user/cam_test/bld/cam >&! cam.log

The commandline above redirects STDOUT and STDERR to the file cam.log. The
CAM logfile contains a substantial amount of information from all components that
can be used to verify that the model is running as expected. Things like namelist vari-
able settings, input datasets used, and output datasets created are all echoed to the
log file. This is the first place to look for problems when a model run is unsuccessful.
It is also very useful to include relevant information from the logfile when submitting
bug reports.

Sample Run Scripts

Examples

This section provides a few examples of using configure and build-namelist to set
up a variety of model runs.

Running CAM via the CESM scripts

Notes

See CESM-1.1 User’s Guide’.

/models/cesm1.1/cesm/doc/usersguide/bookl.html
/models/cesm1.1/index.html

http:/ /www.unidata.ucar.edu/downloads/netcdf/

https:/ /www.unidata.ucar.edu/jira/browse/NCF-22
http:/ /en.wikipedia.org/wiki/SPMD

http:/ /en.wikipedia.org/wiki/Symmetric_multiprocessing

N o e e =

/models/cesm1.1/cesm/doc/usersguide/bookl.html

15

Chapter 2. Building and Running CAM

16

Chapter 3. Model Output

CAM produces a series of NetCDF format history files containing atmospheric grid-
point data generated during the course of a run. It also produces a series of NetCDF
format restart files necessary to continue a run once it has terminated successfully
and a series of initial conditions files that may be used to initialize new simulations.
The contents of these datasets are described below.

Model History Files

History files contain model data values written at specified frequencies during a run.
Options are also available to record averaged, instantaneous, maximum, or minimum
values on a field-by-field basis. If the user wishes to see a field written at more than
one time frequency (e.g. daily, hourly), additional history files must be declared. This
functionality is available via setting namelist variables.

History files may be visualized using various commercial or freely available tools. Ex-
amples include the the NCAR Graphics package (via NCL), FERRET, ncview, MAT-
LAB, AVS, IDL, and Yorick. For a list of software tools for interacting with NetCDF
files, view the link Software for Manipulating or Displaying NetCDF Data'.

Fields Output to History Files

CAM is set up by default to output a set of fields to a single monthly average history
file. There is a much larger set of available fields, known as the "master field list,"
from which the user can choose fields of interest to add to the history file via namelist
settings. Both the set of default fields and the master field list depend on how CAM
is configured. Due to the large number of fields we have chosen to make lists of fields
for some standard configuration available via linked documents rather than to inline
the lists here. Each of the field list documents is comprised of tables containing the
lists of fields that are output by default as well as the master field list.

Note: The master field list tables may contain some fields that are not actually available
for output. The presence of a field in the master field list is a necessary, but not sufficient
condition that the corresponding field in the history file will contain valid data. This is
because in some instances fields are added to the master field list (this is done in the
source code) even though that field may not be computed in the configuration that is built
(specified via the arguments to configure). When adding non-default fields to the history
file it's important to check that the fields contain reasonable data before doing a long run.

Default History Fields and Master Field Lists

The following links provide tables of default and master field lists for some standard
model configurations which are characterized by the values of the -dyn, -phys, and
-chem arguments to configure.

« fv, cam4, none®

+ fv, cam4, trop_bam’

+ fv, cam5, trop_mam3*

o fv, cam4, waccm_mozart® (use_case: waccm_2000_cam4)

e fv, cam4, super_fast_11n16 (use_case: 2000_cam4_super_fast_lInl)

17

Chapter 3. Model Output

Notes

http:/ /www.unidata.ucar.edu/software/netcdf/software. html
/models/cesm1.1/cam/docs/ug5_2/hist_flds_fv_cam4.html
/models/cesm1.1/cam/docs/ug5_2/hist_flds_fv_cam4_trop_bam.html
/models/cesm1.1/cam/docs/ug5_2/hist_flds_fv_cam5.html
/models/cesm1.1/cam/docs/ug5_2/hist_flds_fv_cam4_waccm.html

SARER LI I .

/models/cesm1.1/cam/docs/ug5_2/hist_flds_fv_cam4_super_fast_lInl.html

18

Appendix A. The configure utility

The configure utility provides a flexible way to specify any configuration of CAM.
The best way to communicate to another user how you built CAM is to simply supply
them with the configure commandline that was used (along with the source code
version).

configure has two distinct operating modes which correspond to the two distinct
ways of building CAM, i.e., either using the CESM scripts, or using CAM standalone
scripts. By default configure runs in the mode used by the standalone scripts. In this
mode configure is responsible for setting the filepaths and CPP macros needed to
build not only CAM, but all the components of the standalone configuration includ-
ing the land, sea ice, data ocean, and driver. In the mode used when building CAM
from the CESM scripts configure is only responsible for setting the filepaths and CPP
macros needed to build a library containing just the CAM component.

When configuring a build of standalone CAM, configure produces the files Filepath
and Makefile. In addition, a configuration cache file (config_cache.xml by default)
is written which contains the values of all the configuration parameters set by con-
figure. The files produced by configure are written to the directory where CAM will
be built, which by default is the directory from which configure is executed, but can
be specified to be elsewhere (see the ~cam_b1d option).

When configuring CAM for a build using the CESM scripts, configure doesn’t write
a Makefile, but instead writes a file cCsM_cppde £s which is used by the CESM Make-
file. Also, the Filepath file only contains paths for the CAM component.

In both modes configure is responsible for setting the correct filepaths and CPP
macros to produce the desired configuration of CAM’s dynamical core, physics pa-
rameterizations and chemistry scheme. The options that are involved in making these
choices are described in the Section called CAM configuration below. The subsequent
sections describe options used by the CAM standalone scripts.

configure will optionally perform tests to validate that the Fortran compiler is opera-
tional and Fortran 90 compliant, and that the linker can resolve references to required
external libraries (NetCDF and possibly MPI). These tests will point out problems
with the user environment in a way that is much easier to understand than looking
at the output from a failed build of CAM. We strongly recommend that the first time
CAM is built on any new machine, configure should be invoked to execute these tests
(see the -test option).

How configure is called from the CESM scripts

The CESM scripts access CAM’s configure via the script
$CAM_ROOT/models/atm/cam/bld/cam.buildnml.csh. The cam.buildnml.csh
script acts as the interface between the CESM scripts and CAM’s configure and
build-namelist utilities.

Options to configure

All configuration options can be specified using command line arguments to con-
figure and this is the recommended practice. Options specified via command line
arguments take precedence over options specified any other way.

At the next level of precedence a few options can be specified by setting
environment variables. And finally, at the lowest precedence, many
options have hard-coded defaults. Most of these are located in the files
$CAM_ROOT/models/atm/cam/bld/config_files/defaults_*.xml. A few that
depend on the values of other options are set by logic contained in the configure
script (a Perl script). The hard-coded defaults are designed to produce the standard
production configurations of CAM.

19

Appendix A. The configure utility

20

The configure script allows the user to specify compile time options such as model
resolution, dynamical core type, additional compiler flags, and many other aspects.
The user can type configure --help for a complete list of available options.

The options may all be specified with either one or two leading dashes, e.g., —help or
--help. The few options that can be expressed as single letter switches may not be
clumped, e.g., -h -s -vmay NOT be expressed as ~hsv. When multiple options are
listed separated by a vertical bar either version may be used.

CAM configuration

These options will have an effect whether running CAM as part of CESM or running in a
CAM standalone mode:

—[nolage_of_air_trcs

Switch on [off] age of air tracers. Default: on for waccm_phys, otherwise off.

—carma <name>

Build CAM with specified CARMA microphysics model [none | bec_strat |
cirrus | dust |meteor_smoke| pmc |sea_salt | sulfate |test_detrain
| test_growth | test_passive | test_radiative | test_swelling |
test_tracers |. Default: none

—chem <name>

Build CAM with specified prognostic chemistry package [waccm_mozart |

waccm_mozart_vl | waccm_mozart_sulfur | waccm_ghg | trop_mozart
| trop_mozart_mam3 | trop_mozart_soa | trop_ghg [trop_bam |
trop_mam3 | trop_mam7 | super_fast_11lnl | super_fast_11lnl_mam3 |
trop_strat_bam vl | trop_strat_mam3 | trop_strat_mam7 | none]

Default: t rop_mam3 if the physics package is cam5, otherwise default is none.

—clubb_sgs
Switch to turn on the CLUBB_SGS package. Default: Off.

—co2_cycle

This option is usually used with the -ccsm_seq option as part of the configu-
ration for running biogeochemistry (BGC) compsets. It modifies the CAM con-
figuration by increasing the number of advected constituents by 4. Default: not
set.

—comp_intf [mct | esmf]

Specify the component interfaces Default: mct.

—cosp

Enable the COSP simulator package. Default: not set.

—-cppdefs <string>

A string of user specified CPP defines appended to Makefile defaults. E.g.
-cppdefs ’-DVAR1 -DVAR2’. Note that a string containing whitespace will
need to be quoted.

—dyn [eul | s1d | fv | homme]

Build CAM with specified dynamical core. Note that the spectral element dycore
is specified by using the option homme. Default: £v.

Appendix A. The configure utility

—-edit_chem _mech
Invokes CAMCHEM_EDITOR to allow the user to edit the chemistry mecha-
nism file.

—~hgrid <name>

Specify horizontal grid. For spectral grids use nlatxnlon where nlat and nlon

are the number of latitude and longitude grid points respectively in the global

Gaussian grid. For FV grids use dlatxdlon where dlat and dlon are the grid

cell size in degrees for latitude and longitude respectively. For SE grids (cubed

sphere) use nexnp where ne is the number of elements on an edge of the cube,

and np is the number of Gauss points on the edge of an element.
-microphys [mg | rk]

Microphysics package. Default: mg if the physics package is cam5, otherwise rk.

-nadv <n>

Set total number of advected species to <n>. If —nadv is set to a larger number
than is required by the selected physics and chemistry schemes, then the re-
mainder will automatically be used for test tracers. Default: set to the number
required by the selected physics and chemistry schemes.

-nadv_tt <n>

Set number of advected test tracers to <n>. Default: 0.

-nlev <n>

Set number of vertical layers to <n>. Default: 30 if the physics package is cam5,
ideal, or adiabatic. 26 if the physics package is cam4. 66 if the chemistry pack-
ageiSwaccm_*.81ifthe—waccmxisused.

—-offline_dyn

Switch enables the use of offline driver for FV dycore. Default: not set.

—pbl [uw | hb | hbr | clubb_sgs]
PBL package. Default: uw if the physics package is cam5; clubb_sgs if the
—-clubb_sgs switch is set; otherwise hb.

-pcols <n>

Set maximum number of columns in a chunk to <n>. Default: 16.

-pergro
Switch enables building CAM for perturbation growth tests. Only valid with
cam3 and cam4 physics packages.

-phys [cam3 | cam4 | cam5 | ideal | adiabatic]

Physics package. Default: cams.

-prog_species <list>
Comma separated list of prognostic mozart species packages. Currently avail-
able: DST, SSLT, S04, GHG, OC, BC, CARBON16

-rad [rrtmg | camrt]

Radiation package. Default: rrtmg if the physics package is cam5, otherwise
camrt.

21

Appendix A. The configure utility

22

—-usr_mech_infile <name>

Pathname of the user supplied chemistry mechanism file.

-waccm_phys

Switch enables the use of WACCM physics in any chemistry configuration. De-
fault: Off. If one of the waccm chemistry options is chosen then it’s automatically
turned on.

—waccmx

Build CAM/WACCM with WACCM upper Thermosphere/lonosphere
extended package.

SCAM configuration

—camiop

Configure CAM to generate an IOP file that can be used to drive SCAM. This
switch only works with the Eulerian dycore.

—scam

Compiles model in single column mode. Only works with Eulerian dycore.

CAM parallelization

-ntasks <n>

This option must be used to specify SPMD parallelism when the CICE compo-
nent is present. <n> is the number of MPI tasks. Setting ntasks > 0 implies -spmd.
Use -nospmd to turn off linking with an MPI library. To configure for pure MPI
specify "-ntasks N -nosmp". ntasks is used by CICE to determine default grid
decompositions which must be specified at build time.

-nthreads <n>

This option must be used to specify SMP parallelism when the CICE component
is present. <n> is the number of OpenMP threads per process. Setting nthreads
> 0 implies -smp. Use -nosmp to turn off compilation of OMP directives. For
pure OpenMP set "-nthreads N -nospmd" nthreads is used by CICE to determine
default grid decomposition which must be specified at build time.

—[no] smp

Switch on [off] SMP parallelism (OpenMP). This option can be used when build-
ing a model that doesn’t contain CICE. It allows building an executable whose
thread count can be set at run time.

—[no] spmd

Switch on [off] SPMD parallelism (MPI). This option can be used when building
a model that doesn’t contain CICE. It allows building an executable whose task
count can be set at run time.

Appendix A. The configure utility

CICE decomposition

When CAM is running standalone with CICE the default CICE decomposition is determined
from the values of the -ntasks and —-nthreads arguments. The user also has the ability to
explicitly set the CICE decomposition using the following arquments:

Note: “** All four of these arguments must be set. ***

—cice_bsizex <n>
CICE block size in longitude dimension. This size must evenly divide the num-
ber of longitude points in the global grid.

—-cice_bsizey <n>
CICE block size in latitude dimension. This size must evenly divide the number
of latitude points in the global grid.

—cice_maxblocks <n>

Maximum number of CICE blocks per process.

—cice_decomptype <name>

CICE decomposition type [cartesian | spacecurve | roundrobin]

General options

—cache <name>

Name of output cache file. Default: config_cache.xml.

—cachedir <dir>

Name of directory where output cache file is written. Default: CAM build direc-
tory.

—ccsm_seq

Switch to specify that CAM is being built from within the CESM scripts. This
produces Filepath and CCSM_cppdefs files that contains only the paths and CPP
macros needed to build a library for the CAM component.

—-defaults <name>

Specify a configuration file which will be used to supply defaults instead of one
of the config_files/defaults_x.xml files. This file is used to specify model
configuration parameters only. Parameters relating to the build which are system
dependent will be ignored.

~help | -h
Print usage to STDOUT.
-silent | -s

Turns on silent mode - only fatal messages printed to STDOUT.

—-test

Switch on testing of Fortran compiler and linking to external libraries.

23

Appendix A. The configure utility

24

-verbose | -v

Turn on verbose echoing of settings made by configure.

-version

Echo the repository tag name used to check out this CAM source tree.

Surface components

Options for surface components used in standalone CAM mode:

-ice [cice | sice]

Specify the sea ice component. Default: cice.

-1nd [clm | s1nd]
Specify the land component. Default: c1m.

—ocn[docn| socn | dom |aquaplanet]
Specify ocean component. If set to aquaplanet then the stub ice (sice) and stubb
land (s1nd) components are implied. Default: docn.

—rof [rtm | srof]

Specify the river runoff component. Default: rtm.

CAM standalone build
Options for building CAM via standalone scripts:

—cam_pld <dir>
Directory where CAM will be built. This is where configure will write the output
files it generates (Makefile, Filepath, etc...). Default: ./

—cam_exe <name>

Name of the CAM executable. Default: cam.

—cam_exedir <dir>

Directory where CAM executable will be created. Default: CAM build directory.

—CC <name>

User specified C compiler. Default: Depends on the OS and the Fortran compiler.

—cflags <string>

A string of user specified C compiler options appended to the default options
set in Makefile.

—debug

Switch to turn on building CAM with compiler options for debugging. The spe-
cific options are compiler dependent. These flags are set in the Makefile.in
template file.

Appendix A. The configure utility

—-esmf_libdir <dir>
Directory containing ESMF library and the esmt . mk file. If this option is specified
then the external ESMF library will be used in place of the ESMF-WRF time
manager code which is provided in the CESM source distribution.

—-fc <name>
User specified Fortran compiler. Default: Depends on the OS and whether MPI
is enabled.

-fc_type [pgi | lahey | intel | pathscale | gnu | x1f]
Type of the Fortran compiler. This argument is used in conjunction with the -fc
argument when the name of the fortran compiler refers to a wrapper script (e.g.,
mpif90 or ftn). In this case the user needs to specify the type of Fortran compiler
that is being invoked by the wrapper script. Default: Depends on the name of
the Fortran compiler.

—-fflags <string>
A string of user specified Fortran compiler options appended to the default op-
tions set in the Makefile. See -fopt to override optimization flags.

—-fopt <string>
A string of user specified Fortran compiler optimization flags. Overrides Make-
file defaults.

—-gmake <name>

Name of the GNU make program on your system. Supply the absolute pathname
if the program is not in your path (or fix your path). This is only needed by
configure for running tests via the -test option.

—-lapack_libdir <dir>

Directory containing LAPACK library.

—-ldflags <string>
A string of user specified load options. Appended to Makefile defaults.

—-linker <name>

User specified linker. Default: use the Fortran compiler.

-mpi_inc <dir>

Directory containing MPI include files.

-mpi_lib <dir>

Directory containing MPI library.

-nc_inc <dir>

Directory containing NetCDF include files.

-nc_lib <dir>

Directory containing NetCDF library.

-nc_mod <dir>

Directory containing NetCDF module files.

25

Appendix A. The configure utility

-pnc_inc <dir>

Directory containing PnetCDF include files.
-pnc_1lib <dir>

Directory containing PnetCDF library.

—-rad_driver

Build CAM with the offline radiation driver. This produces an executable that
can only be used for offline radiation calculations.

—target_os <name>

Override the OS setting for cross platform compilation from the following list
[aix|irix|1linux| bgllbgp]. Default: OS on which configure is executed as
defined by the Perl $§OSNAME variable.

—usr_src <dirl>[,<dir2>[,<dir3>[...]1]1]

Directories containing user source code. Note that these directories will also be
searched for modified versions of the files needed by the build-namelist script,
e.g., the namelist definition and use case files.

Environment variables recognized by configure

The following environment variables are recognized by configure. Note that the com-
mand line arguments for specifying this information always takes precedence over
the environment variables.

CASEROOT

Directory where a CESM case is set up. This is only used when building from the
CESM scripts to add the SourceMods directory for CAM to the Filepath file.

ESMF_LIBDIR
Directory containing the ESMF library.

INC_MPI

Directory containing the MPI include files.

INC_NETCDF
Directory containing the NetCDF include files.

INC_PNETCDF
Directory containing the PnetCDF include files.

LAPACK_LIBDIR
Directory containing the LAPACK library.

LIB_MPI
Directory containing the MPI library.

LIB_NETCDF
Directory containing the NetCDF library.

26

LIB_PNETCDF
Directory containing the PnetCDF library.

MCT_LIBDIR
Directory containing the MCT libraries.

MOD_NETCDF

Directory containing the NetCDF module files.

Appendix A. The configure utility

27

Appendix A. The configure utility

28

Appendix B. The build-namelist utility

The build-namelist utility builds namelists (and on occasion other types of input
files) which specify run-time details for CAM and the components it’s running
with in standalone mode. When executed from the CESM scripts it only produces
a namelist file for the CAM component (in the file atm_in), and a namelist file
for control of dry deposition which is shared by CAM and CLM (in the file
drv_flds_in).

The task of constructing a correct namelist has become extremely complex due to
the large number of configurations supported by CAM. Editing namelists by hand is
an extremely fragile process due to the number of variables that need to be set, and
to the many interdependencies among them. We do not recommend editing namelists
by hand. All customizations of the CAM namelist are possible by making use of the
build-namelist command line options.

Some of the important features of build-namelist are:

« All valid namelist variables are known to build-namelist. So an invalid variable
specified by the user (supplied either by the -infile or -namelist options) will
cause build-namelist to fail with an error message telling which namelist variable
is invalid. This is a big improvement over a runtime failure caused by an invalid
variable which typically gives no hint as to which variable caused the problem.

+ In addition to knowing all valid variable names and their types, build-namelist
also knows which namelist group each variable belongs to. This means that the
user only needs to specify variable names to build-namelist and not the group
names. The -infile and -namelist options still require valid namelist syntax as
input, but the group name is ignored. So all variables can be put in a single group
with an arbitrary name, for example, "&xxx ... /".

« Since build-namelist knows all namelist variables specified by the user it is able
to do consistency checking. In general however, build-namelist assumes that the
user is the expert and will not override a user specification unless there is a ma-
jor inconsistency, for example if variables have been set to use parameterizations
which can not be run at the same time.

« All configurations have namelist variables that must be specified, and
build-namelist has a mechanism to provide default values for these variables.
When an appropriate default value cannot be found then build-namelist will fail
with an informative message.

» When running a configuration for the first time there are often many input datasets
that may not be in the local input data directory. In order to facilitate getting the
required datasets build-namelist has an option, -test, that can be used to pro-
duce a complete list of required datasets and report status of whether or not they
are present in the local directory. This list can then be used to obtain the needed
datasets from the CESM SVN input data repository.

One required input for build-namelist is a configuration cache file produced by a

previous invocation of configure (config_cache.xml by default). build-namelist

looks at this file to determine the features of the CAM executable, such as

the dynamical core and horizontal resolution, that affect the default spec-

ifications for namelist variables. The default values themselves are specified in the file

$CAM_ROOT/models/atm/cam/bld/namelist_files/namelist_defaults_cam.xml,
and in the use case files located in the directory

SCAM_ROOT/models/atm/cam/bld/namelist_files/use_cases/.

The other required input for build-namelist is the root directory for the input
datasets. This is required since nearly all input files must be specified using absolute
filepaths, but the defaults are stored as filepaths which are relative to the root
directory. It is expected that the actual location of the root directory is something

29

Appendix B. The build-namelist utility

that will be resolved at runtime. The way this is done is to either specify it using the
-csmdata argument, or to set the environment variable CSMDATA.

The methods for setting the values of namelist variables, listed from highest to lowest
precedence, are:

. using specific command-line options, e.g., -case and -runtype,
. using the -namelist option,

. setting values in a file specified by -infile,

B W N e

. specifying a —use_case option,

5. setting values in the namelist defaults file.
The first four of these methods for specifying namelist variables are the ones available
to the user without requiring code modification. Any namelist variable recognized by

CAM can be modified using method 2 or 3. The final two methods represent defaults
that are hard coded as part of the code base.

Options to build-namelist

30

To get a list of all available options, type build-namelist --help. Available options
are also listed just below.

The following options may all be specified with either one or two leading dashes,
e.g., ~help or ——help. The few options that can be expressed as single letter switches
may not be clumped, e.g., -h -s -v may NOT be expressed as ~hsv. When multiple
options are listed separated by a vertical bar either version may be used.

—case <name>
Case identifier up to 80 characters. This value is used to set the case_name vari-
able in the driver namelist. Default: camrun

—cice_nl <namelist>

Specify namelist settings for CICE directly on the commandline by supplying
a string containing FORTRAN namelist syntax, e.g., -cice_nl "&ice
histfreq=1 /". This namelist will be passed to the invocation of the CICE
build-namelist via its —-namelist argument.

—config <filepath>
Read the specified configuration cache file to determine the configuration of the
CAM executable. Default: config_cache.xml.

—-config_cice <filepath>

Filepath of the CICE config_cache file. This filepath is passed to the invocation
of the CICE build-namelist. Only specify this to override the default filepath
which was set when the CICE configure was invoked by the CAM configure.

—csmdata <dir>
Root directory of CESM input data. Can also be set by using the CSMDATA
environment variable.

-dir <dir>

Directory where output namelist files for each component will be written, i.e.,
atm_in, drv_in, ice_in, Ind_in and ocn_in. Default: current working direc-
tory.

Appendix B. The build-namelist utility

-help | -h
Print usage to STDOUT.

—-ignore_ic_date
Ignore the date attribute of the initial condition files when determining the de-
fault.

—ignore_ic_year
Ignore just the year part of the date attribute of the initial condition files when
determining the default.

-infile <filepath>

Specify a file containing namelists to read values from.

—inputdata <filepath>

Writes out a list of pathnames for required input datasets to the specified file.

-namelist <namelist>
Specify namelist settings directly on the commandline by supplying a
string containing FORTRAN namelist syntax, e.g., -namelist "&atm
stop_option=’'ndays’ stop_n=10 /"

—-ntasks <n>
Specify the number of MPI tasks to be used by the run. This is only used to set a
default decomposition for the FV dycore, i.e., the npr_yz variable.

-runtype [startuplcontinue lbranch]

Type of simulation. Default: startup.

-silent | -s

Turns on silent mode - only fatal messages issued.

-test
Enable checking that input datasets exist on local filesystem. This is also a con-
venient way to generate a list of the required input datasets for a model run.
—use_case <name>

Specify a use case.

-verbose | -v

Turn on verbose echoing of informational messages.

-version

Echo the source code repository tag name used to check out this CAM distribu-
tion.

Environment variables used by build-namelist

The environment variables recognized by build-namelist are presented below.

CSMDATA

Root directory of CESM input data. Note that the commandline argument
-csmdata takes precedence over the environment variable.

31

Appendix B. The build-namelist utility

OMP_NUM_THREADS

If values of the specific variables that set the thread count for each component,
i.e., atm nthreads, cpl_nthreads, ice_nthreads, 1nd nthreads, or
ocn_nthreads, are set via the -namelist, or -infile options, then these values
have highest precedence. The OMP_NUM_THREADS environment variable
has next highest precedence for setting any of the component specific thread
count variables. Lowest precedence for setting these variables is the value of
nthreads from the configure cache file.

32

Appendix C. CAM Namelist Variables

A CAM model run is controlled using the build-namelist facility described in Ap-
pendix B. The focus of this appendix is to provide a reference for the variables that
may be set through the use of build-namelist. A searchable (or browsable) page is
also available here', or by following the "Search Namelist Variables" link under the
Documentation section of the CAM home page’.

Note: The table version of the variables is not yet ready.

Notes
1. /cgi-bin/eaton/namelist/nldef2html-cam5_2

2. /models/cesml.1/cam

33

Appendix C. CAM Namelist Variables

34

	User's Guide to the Community Atmosphere Model CAM5.2
	Table of Contents
	Acknowledgments
	Chapter 1. Introduction
	Changes from previous release
	Getting Help Other User Resources
	The CAM Web Page
	The CESM Bulletin Board
	Reporting bugs

	Chapter 2. Building and Running CAM
	Sample Interactive Session
	Configuring CAM for serial execution
	Specifying the Fortran compiler
	Configuring CAM for parallel execution
	Building CAM
	Building the Namelist
	Acquiring Input Datasets
	Example

	Running CAM

	Sample Run Scripts
	Examples
	Running CAM via the CESM scripts

	Chapter 3. Model Output
	Model History Files
	Fields Output to History Files
	Default History Fields and Master Field Lists

	Appendix A. The configure utility
	How configure is called from the CESM scripts
	Options to configure
	CAM configuration
	SCAM configuration
	CAM parallelization
	CICE decomposition
	General options
	Surface components
	CAM standalone build

	Environment variables recognized by configure

	Appendix B. The buildnamelist utility
	Options to buildnamelist
	Environment variables used by buildnamelist

	Appendix C. CAM Namelist Variables

